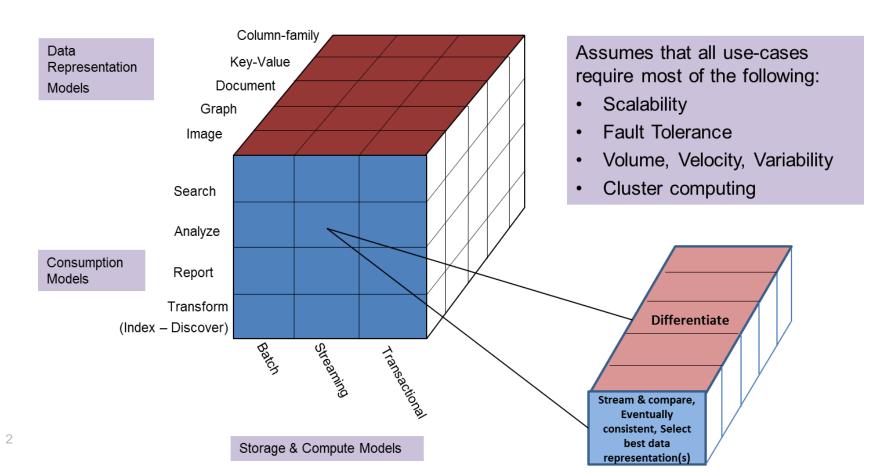
Architecture & Design Characteristics/Controls


NIST Big Data Working Group, Definitions and Taxonomy Subgroup

UCSD, Super Computing Facility March 18-21, 2012

John Rogers, Master Technical Consultant, HP Nancy Grady, PhD, Technical Fellow, SAIC

Big Data Architecture Characteristics Cube

Big Data Projects Risk Avoidance?

Business Purpose, Concerns, Risks, Guidance, and Execution

by way of Example

NIST Special Publication 800-53

Revision 4

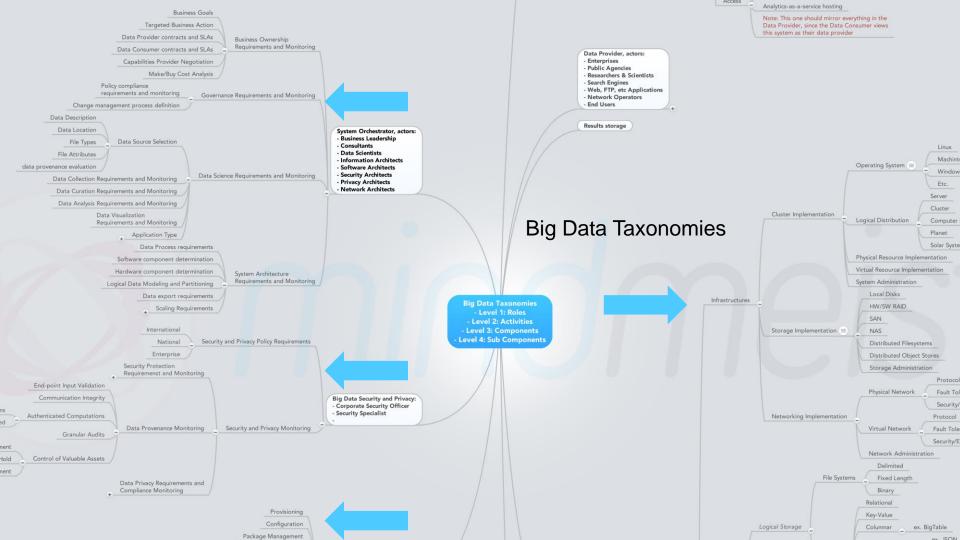
Security and Privacy Controls for Federal Information Systems and Organizations

Our big data assignment, today

Provide detailed guidance to the solutions architects and designers to:

- Build me a system that streams web page hits to a classification model and spits out alerts if a customer meets or exceeds a high-interest thresh-hold.
- Provide continuous monitoring and validation of algorithm performance.
- Provenance is unimportant.
- Data consumers do not need special analysis, fusion, or visualization tools.
- This is primarily an alerting system.
- Scale is 2TB's per week. Retain history for 5 years. Plan for future expansion.
- Provide assurances that the system will work as planned

How do we approach this?


By analogy

Follow the pattern of NIST SP 800-53, Version 4, 4/30/2013 "Security and Privacy Controls for Federal Information Systems and Organizations"

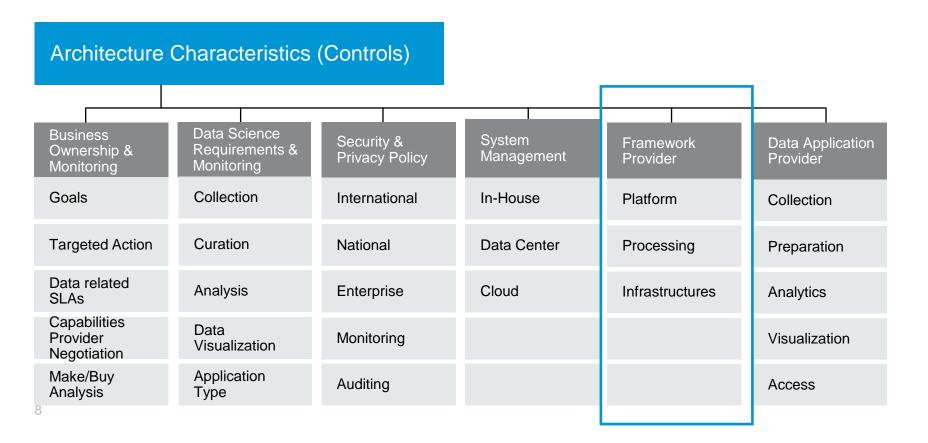

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

TABLE 1: SECURITY CONTROL IDENTIFIERS AND FAMILY NAMES

ID	FAMILY	ID	FAMILY
AC	Access Control	MP	Media Protection
AT	Awareness and Training	PE	Physical and Environmental Protection
AU	Audit and Accountability	PL	Planning
CA	Security Assessment and Authorization	PS	Personnel Security
CM	Configuration Management	RA	Risk Assessment
CP	Contingency Planning	SA	System and Services Acquisition
IA	Identification and Authentication	SC	System and Communications Protection
IR	Incident Response	SI	System and Information Integrity
MA	Maintenance	PM	Program Management

Big Data Taxonomies

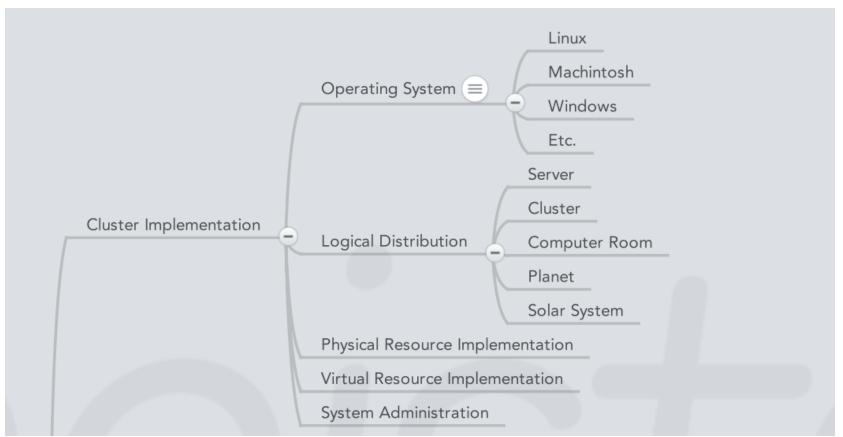
Characteristic (Control) Identifiers and Family names

ID	Family	ID	Family
во	Business Ownership Monitoring	DC	Data Consumer
DS	Data Science Requirements Monitoring	DP	Data Provider
SP	Security & Privacy Policy	FP	Framework Provider
SM	System Management	DA	Data Applications Provider

Family Names are consistent with Level 1 (Roles) in the Big Data Taxonomy

Example: Drill-down into Framework Provider activities

Framework Pro	ovider Family (FP)	
ID	Activity	
IN	Infrastructure	
PL	Platform	
PF	Processing Framework	


Activity categories are consistent with Level 2 (Activities) in the Big Data Taxonomy

Drill down to Framework Provider, Infrastructure Activity components

Framework Pro	ovider Family (FP)	
Infrastructure Activity (I)		
ID	Component	
CL	Cluster	
ST	Storage	
NW	Network	

Implementation categories are consistent with Level 3 (Components) in the Big Data Taxonomy

Infrastructure Cluster Implementation

Drill down to Framework Provider, Infrastructure Activity, Cluster and Storage Sub-components

Framework Provider Family (FP)			
Infrastructure Activity (I)			
Cluster (C)		Storage (S)	
ID	Sub-Component	ID	Sub-Component
DR	Logical Distribution	DF	Distributed File System
PR	Physical Resource	DO	Distributed Object Store
VR	Virtual Resource	RD	RAID
os	Operating System	DD	Disk type (HDD, SDD, Array, Network)
SA	System Administration	SN	Storage Administration

Sub-categories are consistent with Level 4 (Sub-Components)

Drill down to Framework Provider, Infrastructure Activity, Cluster Sub-component, Physical Resource

Framework Pr	ovider Family (FP)		
Infrastructure /	Activity (I)		
Cluster Comp	onent (C)		
Physical Reso	urce Sub-component (PR)		
		Commodity Server Performance	
ID	Sub-Component	Commodity Se	erver Performance
1D	Sub-Component Commodity Server	Commodity Se	erver Performance Base
1 2		Commodity Se	

FP-I-C-PR-12 (Mid-range server)

Additional Characteristics (controls)

Guidance for today's assignment

FP-I-C-PR-13 (Mid Range Server)

BO-MB (High)

SP-PM (low)

DS-CM (Med)

DS-AM (Med)

DC-VA (High)

DC-SR (Low)

DP-WC (High)

DA-AP-ML-CL (High)

DA-AP-ML-DF (Med)

DA-AP-ML-SA (Low)

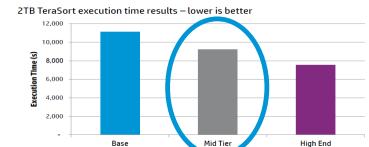
- Build me a system that streams web page hits in a classification model and spits out alerts if a customer meets or exceeds a high-interest thresh-hold.
- Provide continuous monitoring and validation of algorithm performance.
- Provenance is not important.
- Data consumers do not need special analysis, fusion, or visualization tools.
- This is primarily an alerting system.
- Scale is TB's per week.
- Keep capital cost reasonable.
- Infrastructure selection based on testing

Again, by way of Example

Ex: Evaluate Workloads

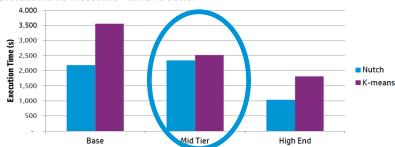
TeraSort

- Base workload: Find, Shuffle, Sort in Order
- Good Overall utilization (CPU, Memory, Disk, Network IO)

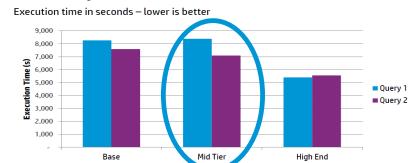

Intel Hi-Bench Workloads

- Web-Search: K-V Indexing
- Machine Learning: K-Means Clustering

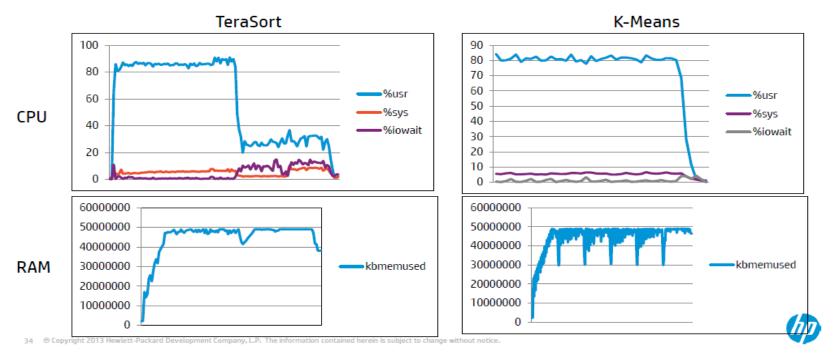
Data Analytics


- Query on data warehouse type data
- Complex queries with many joins and grouping/sorting operations

TeraSort



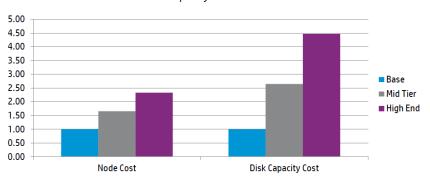
Nutch Indexing and K-means Clustering



Data Analytics – Hive Queries

Ex: Evaluate limits

- Typically CPU, Memory, and or Disk I/O limited.
- Only networked limited about 10-15% of the time, if at all

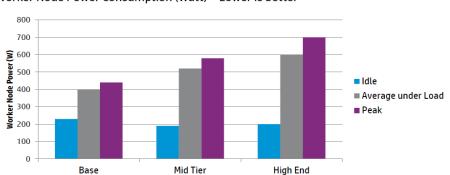

Ex: Evaluate tradeoffs

Performance vs. cost

- Sorting and Cluster workloads improved by 25% over base
- Node costs increase by 50% for each step
- Tradeoff improved disk reads at higher cost
- Idle power consumption improves energy use
- Tradeoff faster batch process at higher intermittent energy use

Relative Cost Comparisons

Relative Data Node Cost and Disk Capacity Cost - Lower is better


Relative Performance

Normalized results - Higher is better

System Power Consumption

Worker Node Power Consumption (Watt) – Lower is better

Next Steps for Research

```
FP-I-C-PR-13 (Mid Range Server)
```

BO-MB (High)

SP-PM (low)

DS-CM (Med)

DS-AM (Med)

DC-VA (High)

DC-SR (Low)

DP-WC (High)

DA-AP-ML-CL (High)

DA-AP-ML-DF (Med)

DA-AP-ML-SA (Low)

Additional Cataloguing Considerations

Between and Inside Components in the Taxonomy

- Definitions and Taxonomy group named functional components
- We have not yet addressed the different ways the components work
 - Or the different ways end-to-end systems work
- Use cases give data-process lifecycles
 - See Bob Marcus' M0297 high-level scenarios for use case categorization
- Need to figure out the dimensions that differentiate component instantiations
 - e.g. Inter-node communication -> implying latency in consistency
 - e.g. data location for processing (in-memory, on disk,...)
 - e.g. fault tolerant scheme (replication, master-slave, ...)
 - e.g. analytics time constraints (streaming, interactive, batch,...)

Goal of Research

Convert Big Data WG Architecture and Use-Cases to Characteristic (Control) codes

Present Concept

- Create

 Taxonomies,
 Use cases,
 and
 architecture
 features
- Group functional components

Research

- Address component characteristics and behaviors
- Characterize different system/implementation behaviors
- Identify critical differentiators
- Gather published test results

Build a List of Characteristics (Controls)

- Map component characteristics, behaviors, and differentiators
- · Assign codes
- Create evaluation criteria (low, medium, high)

Brief the Big Data Working Group

 Working Group briefings

Final Research Paper

 Publish or perish

Your feedback is important to us. Please take a few minutes to complete the session survey.

Thank you

Questions?

John.W.Rogers@hp.com Nancy.W.Grady@saic.com